Abstract
The continuous production of low molecular weight (LMW) organic acids by plants and microorganisms coupled with the continuous presence of extracellular polymeric substances (EPS) in soils is a guarantee that the mobility of heavy metals in soils will be controlled. The effects of citrate, oxalate, and EPS on the adsorption of Pb by an acidic Ultisol were studied both as a function of pH and ionic strength. Electrokinetic potential measurements were also employed to observe to what extent each ligand affected the surface charge property of the Ultisol. All the ligands shifted the zeta potential of the Ultisol to the negative direction, implying that the surface charge of the soil became more negative. The effect on the zeta potential of the soil was observed in the order of oxalate ˃ citrate ˃ EPS. The quantity of Pb adsorbed at each pH (3.0–7.0) reflected the corresponding change in the zeta potential as induced by each ligand. The presence of the ligands shifted the isoelectric point of the Ultisol from 4.8 to 3.2 for the EPS system and below 3.0 for the citrate and oxalate systems. More Pb was adsorbed in the presence of oxalate than in the presence of citrate and EPS. The two most outstanding mechanisms that governed the adsorption of Pb by the Ultisol were (1) electrostatic attraction which was supported by the increase in negative zeta potential of the Ultisol and, (2) complexation which was supported by the lesser proportion of Pb adsorbed in the citrate system at higher pH and also by the spectroscopic data for EPS. The combination EPS + citrate + oxalate was more effective in enhancing the adsorption of Pb than the combination EPS + oxalate and EPS + citrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.