Abstract

As an analog model of general relativity, optics on some two-dimensional (2D) curved surfaces has received increasing attention in the past decade. Here, in light of the Huygens–Fresnel principle, we propose a theoretical frame to study light propagation along arbitrary geodesics on any 2D curved surfaces. This theory not only enables us to solve the enigma of “infinite intensity” that existed previously at artificial singularities on surfaces of revolution but also makes it possible to study light propagation on arbitrary 2D curved surfaces. Based on this theory, we investigate the effects of light propagation on a typical surface of revolution, Flamm’s paraboloid, as an example, from which one can understand the behavior of light in the curved geometry of Schwarzschild black holes. Our theory provides a convenient and powerful tool for investigations of radiation in curved space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.