Abstract
A formal theory for heteronuclear decoupling in solid-state magic angle spinning (MAS) nuclear magnetic resonance experiments is presented as a first application of multipole-multimode Floquet theory. The method permits a straightforward construction of the multispin basis and describes the spin dynamics via effective Floquet Hamiltonians obtained using the van Vleck transformation method in the Floquet-Liouville space. As a test case, we consider a model three-spin system (I2S) under asynchronous time modulations (both MAS and rf irradiation) and derive effective Hamiltonians for describing the spin dynamics in the Floquet-Liouville space during heteronuclear decoupling. Furthermore, we describe and evaluate the origin of cross terms between the various anisotropic interactions and illustrate their exact contributions to the spin dynamics. The theory presented herein should be applicable to the design and understanding of pulse sequences for heteronuclear and homonuclear recoupling and decoupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.