Abstract

We introduce a simple and effective method to decompose the energy dissipation in the dynamics of open quantum systems into contributions due to individual bath components. The method is based on a vibronic extension of the Förster resonance energy transfer theory that enables quantifying the energy dissipated by specific bath degrees of freedom. Its accuracy is determined by benchmarking against mixed quantum-classical simulations that reveal that the method provides a semi-quantitative frequency-dependent decomposition of the overall dissipation. The utility of the method is illustrated by using a model donor-acceptor pair interacting to a thermal harmonic bath with different coupling strengths. The method can be used to identify the key features of a bath that leads to energy dissipation as required to develop a deep understanding of the dynamics of open quantum systems and to engineer environments with desired dissipative features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.