Abstract
In this paper an attempt has been made to investigate theoretically the time-profile of an X-ray burst observed at photon energies well below 0.5 MeV. Following DeJager (1967) this type of X-bursts is called deka-keV X-ray bursts. The energy distribution of fast electrons which emit the hard X-ray burst has been computed as a function of time. On the basis of these expressions the time-profile of a deka-keV burst has been calculated. In this paper two plausible initial electron distributions were chosen, a mono-energetic distribution and a maxwellian distribution of electron energies. It has been proved that the process of energy loss of an electron is completely governed by losses due to magnetic bremsstrahlung emission. This implies that the decay shape of a deka-keV X-ray burst is determined by the value of the magnetic-field strength existing in the plasma. A typical decay time of an X-ray burst, which is about 3 min, can be expected theoretically from a thermal plasma of temperature 109 °K confined by a magnetic field of about 750 gauss. The theory developed in this paper indicates that the soft X-ray burst accompanying the deka-keV burst lasts much longer than the deka-keV burst itself.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have