Abstract

Quantitative predictions of defect properties in semiconductors using density functional theory have been crippled by two issues: the supercell approximation, which has incorrect boundary conditions for an isolated defect, and approximate functionals, that drastically underestimate the band gap. I describe modifications to the supercell method that incorporate boundary conditions appropriate to point defects, identify a common electron reservoir for net charge for all defects, deal with defect banding, and incorporate bulk polarization. The computed level spectrum for an extended set of silicon defects spans the experimental gap, i.e., exhibits no band gap problem, and agrees remarkably well with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.