Abstract
It is suggested that the Jovian decametric emissions (DAM) originate in a cyclotron instability of weakly relativistic electrons trapped in the Jovian magnetic field. The resulting radiation has a group velocity in the magnetosphheric plasma which may be of order 10 2km/sec, and thus takes much more time to escape the magnetosphere than if the group velocity were at or near the speed of light. Therefore, the asymmetry of the Io phase with respect to sources east and west of the Earth-Jupiter line does not imply an asymmetric beaming of DAM; it is caused by the delay the waves experience in traversing the magnetosphere. The frequency drifts of milli- and decasecond bursts are also explained. It is found that the rotation of the magnetosphere can play an important role, since the observer views the propagation velocity of the waves as the sum of their group velocity and the velocity of the medium itself. The rotation velocity is in opposite directions, relative to the observer, for sources east and west of the Earth-Jupiter line; the resultant vector addition gives positive frequency drifts for decasecond bursts from the early and fourth sources, and negative drifts for bursts from the main and third sources. The negative drifts of millisecond bursts may be the result of large density gradients of plasma in a temporarily compressed magnetosphere.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have