Abstract

Water cycling process in a river basin becomes more complicated because of the intensified impact by human activities. Study of the law of annual runoff, evolution in a river basin is of great significance to quantitative analysis of the water resources condition in varied environment and prediction of the law of the water resources evolution in the future because year-based time span may best reflect the law of the water resources evolution driven by the nature and human activities in the river basin. This paper advances the theory of annual runoff evolution under natural-artificial dual mode based on the dual mode of the water resources evolution, and the theory is applied for the Wuding River Basin on the middle Yellow River as a case study. A thorough analysis of the precipitation-runoff relationship is made in the case of dynamic variation of ground surface conditions of the Wuding River basin, and the concept of water-soil conservation index are a that indicates adoption of various measures for water and soil conservation to reflect ground surface conditions. Furthermore, precipitation-runoff empirical model is developed to reflect dynamic variation of the ground surface conditions of the river basin. The study may lay a solid foundation for the integrated theoretical platform of the law of the water resources evolution in the Yellow River basin and the dual model of the evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.