Abstract

In earlier studies, the authors showed that an application of classical methods of mechanics of deformable media to the study of properties of 4D-space-time continuum permit stating consistent models of nonholonomic media mechanics consistent with the first and second laws of thermodynamics. In the present paper, we show that the classical methods of continuum mechanics are also promising when modeling physical processes. It is shown that, just as in the three-dimensional theory of stationary dislocations, there exist dislocations of three types for a generalized 4D-medium. They correspond to the decomposition of the free distortion tensor into a spherical tensor, a deviator tensor, and a pseudotensor of rotations. We interpret several particular models, thus showing that the proposed model describes the spectrum of known physical interactions: electromagnetic, strong, weak, and gravitational. We show that the resolving equations include the Maxwell equations of electrodynamics and the Yukawa equations for strong interactions as subsystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.