Abstract

We present a method for the calculation of the potential on the surface of a homogeneous semiconductor slab with a disc source electrode on part of the front surface and a resistive contact over the backside of the entire slab. The imposed boundary condition of a constant potential over the source region gives rise to a pair of dual integral equations, which is transformed into a Fredholm integral equation of the second kind and subsequently solved using a simple numerical integration. The potential distributions on the surface of the slab are calculated for contact-to-semiconductor resistivity ratio in the range of 0 to 1 and for slab thickness ranging from 0.1 to 5× the radius of the disc contact. The results, which are directly applicable to the microelectronic test pattern NBS-3 [1], show that there is a strong dependence of the surface potential distribution on the backside contact resistivity. A hitherto used two-dimensional model, with a strip source contact and restricted to the special case of a perfectly conducting backside contact, is shown to provide gross overestimates of the corresponding surface potentials when compared to the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.