Abstract

AbstractThermal convection is one of the three basic heat transfer mechanisms, profoundly influencing the natural environment, social production, and daily life. However, the high complexity of governing equation, which describes the coupling of heat and mass transfer, makes it challenging to manipulate thermal convection at will in both theory and experiment. Here, we consider the heat transfer in Hele-Shaw cells, a widely-used model of Stokes flow between two parallel plates with a small gap, and apply the scattering-cancellation technology to construct convective thermal materials with bilayer structures and homogeneous isotropic materials. By tailoring thermal conductivity and viscosity, we demonstrate cloaking devices that can simultaneously hide obstacles from heat and fluid motion and verify their robustness under various thermal-convection environments by numerical simulations. Our results show that about 80% of the temperature and pressure disturbances in the background caused by obstacles can be eliminated by the cloak. The developed approach can be extended to control other convection-diffusion systems or multiphysics processes. The results pave a promising path for designing various metadevices such as concentrators or sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.