Abstract
The model of fracture of liquid under tension is developed. It is based on the “nucleation-and-growth” approach introduced initially by D. R. Curran et al. Phys. Rep. 147, 253 1987. The model derives the kinetics of fracture at mesoscale from the kinetics of elementary processes of void nucleation and growth in metastable liquid. The kinetics of nucleation and growth of voids in highly metastable liquid is studied in molecular dynamics MD simulations with the Lennard-Jones interatomic potential. The fracture under dynamic loading is considered, when the homogeneous void nucleation is relevant. The model is applied to the estimation of the spall strength of liquid. The growth of nanometer-size voids is shown to be well described by the Rayleigh-Plesset equation. The calculations of the void size distribution by the proposed kinetic model are in agreement with the distributions obtained in the direct large-scale MD simulations. The spall strength evaluated by the model is in a good agreement with the experimental data the shock wave tests on hexane and the direct MD simulations. The correspondence between our results on nucleation rate and the predictions of the classical nucleation theory is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.