Abstract
This paper is concerned with equivariant normal forms of semilinear functional differential equations (FDEs) in general Banach spaces. The analysis is based on the theory previously developed for autonomous delay differential equations and on the existence of invariant manifolds. We show that in the neighborhood of trivial solutions, variables can be chosen so that the form of the reduced vector field relies not only on the information of the linearized system at the critical point but also on the inherent symmetry. We observe that the normal forms give critical information about dynamical properties, such as generic local branching spatiotemporal patterns of equilibria and periodic solutions. As an important application of equivariant normal forms, we not only establish equivariant Hopf bifurcation theorem for semilinear FDEs in general Banach spaces, but also in a natural way derive criteria for the existence, stability, and bifurcation direction of branches of bifurcating periodic solutions. We employ these general results to obtain the existence of infinite many small-amplitude wave solutions for a delayed Ginzburg-Landau equation on a two-dimensional disk with the homogeneous Dirichlet boundary condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.