Abstract
In this paper, we extend the equivariant Hopf bifurcation theory for semilinear functional differential equations in general Banach spaces and then apply it to reaction–diffusion models with delay effect and homogeneous Dirichlet boundary condition on a general open domain with a smooth boundary. In the process we derive the criteria for the existence and directions of branches of bifurcating periodic solutions, avoiding the process of center manifold reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.