Abstract
This paper proposes a sampling procedure called selected ranked set sampling (SRSS), in which only selected observations from a ranked set sample (RSS) are measured. This paper describes the optimal linear estimation of location and scale parameters based on SRSS, and for some distributions it presents the required tables for optimal selections. For these distributions, the optimal SRSS estimators are compared with the other popular simple random sample (SRS) and RSS estimators. In every situation the estimators based on SRSS are found advantageous at least in some respect, compared to those obtained from SRS or RSS. The SRSS method with errors in ranking is also described. The relative precision of the estimator of the population mean is investigated for different degrees of correlations between the actual and erroneous ranking. The paper reports the minimum value of the correlation coefficient between the actual and the erroneous ranking required for achieving better precision with respect to the usual SRS estimator and with respect to the RSS estimator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have