Abstract

In this article, we present a computational study of the nonlinear optical properties of pyridine-based octupolar molecules in their neutral and fully triprotonated states. The effect of the core substitution and the degree of conjugation with the periphery has been also established and confirms the possibility of fine-tuning the nonlinear optical response. Computations involving the time-dependent density-functional theory approach serve to further explore the existence of excited states with nonzero dipole moment. From these results, the origin of the high second-order nonlinear optical activity upon protonation is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.