Abstract

Recent results on ion synthesis and nonlinear optical properties of metal nanoparticles in various dielectrics are presented. Copper and silver nanoparticles were fabricated in silica and soda lime glasses by low energy ion implantation. The nonlinear optical characteristics of nanoparticle composite materials, which may be suited for optical sensing, were studied by applying Z-scan transmittance measurements. They were performed in the near IR area at a wavelength of 1,064 nm, using picosecond pulses of a Nd:YAG laser. Optical nonlinearities of the metal nanoparticles in various substrates such as a nonlinear refraction and a nonlinear susceptibility were detected. It was shown that the influence of the dielectric environment (optical constants) around these nanoparticles considerably changes the nonlinear optical response of the composite materials. Ultrafast optical sensors based on nonlinear effects in metal nanoparticles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.