Abstract

Theoretical equations for a particle size-determination method by applying an attenuated-total-reflection (ATR) technique were obtained. Based on these equations, the ATR-spectral intensities were calculated as functions of the sample amount and on the particle size for various choices of the experimental parameters. A mono layer region was more adequate for size measurements than a multiple-layers region. A prism and the incidence angle should be adequately selected according to the aims of the measurements. Experimental results of the sample amount dependences of the spectral intensities were almost consistent with calculations. The experimental results of size dependences showed the same tendency as those by calculations for SiO2 and SiC; especially for SiC, they were in just accord with those by calculations in the case of a KBr prism. Each component of a mixed plural-kind-particles sample almost agreed in its spectral intensity with that of a corresponding single-kind-particles sample. The particle size-determination method, based on the ATR technique, was theoretically supported, and its characteristics were revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.