Abstract

Phase diagram of polytetrafluoroethylene (PTFE) comprises four regions. Phases II and IV are characterized by twisted perfluoroalkyl (Rf) chains having different twisting rate of 13/6 and 15/7, respectively, while Phase III is characterized by a planer trans-zigzag molecular skeleton like a normal alkyl chain. These are confirmed by X-ray and electron diffraction and have already been established. Unlike these, Phase I is left an unresolved matter. This phase is complicated indeed and is not symbolized by a single molecular structure. At an ambient pressure, Phase I is the temperature region above 30 ºC (303 K), and the helical molecular structure is supposed to be gradually untwisted with an elevating temperature. This untwisting image is roughly suggested by the diffraction, neutron scattering, and thermal expansion techniques, but the conventional approaches have all experimental limitations because the untwisting accompanies disorder (or defect) in the twist along the chain. To explore the transition between two different helical structures of the Rf chain having disordered structures, vibrational spectroscopic techniques are expected to be an alternative approach. For infrared spectroscopy, for example, the twisting rate of the molecule is simply recognized as a degree of molecular symmetry. Here, we show that the band progression peaks of the CF2 symmetric stretching vibration mode are quite sensitive and useful for pursuing the molecular symmetry change in Phase I for both peak intensity and position using perfluoro-n-alkanes having different chain length covering both even and odd number of the CF2 groups.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.