Abstract

We performed nonadiabatic quantum wave packet dynamics calculations to simulate the photodetachment spectrum of the GeH2- (2B1) anion. We developed the (4 × 4) diabatic potential energy surfaces to describe the intersystem crossing transitions between the neutral 1A1 and 3B1 states induced by spin-orbit interactions based on ab initio calculations. The spin-orbit coupling matrix elements were calculated using the Breit-Pauli Hamiltonian with the spin-free states obtained from the multireference configuration interaction method. The calculated photodetachment spectrum showed many intense peaks that could be assigned to the vibrational states mostly associated with the pure singlet or triplet spin states. However, we also found weak satellite peaks that could be assigned to vibrational states consisting of the highly excited vibrational state on the singlet surface and the low-lying vibrational state on the triplet surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.