Abstract

The hydrogen/deuterium (H/D) exchange rate is an optimal measure for studying the structures and dynamics of hydrogen bonding systems, as it reflects the molecular contact environment and the strength of the hydrogen bonds. A method for rapid measurement of the H/D exchange reaction rates is required to examine the intermolecular environments of molecules in solutions. We developed a droplet collision atmospheric pressure infrared laser ablation mass spectrometry technique for this purpose. We obtained the H/D exchange reaction rate of cytochrome c in a methanol/H2O·D2O solution. We revealed that the first hydration shell of the cytochrome c molecule hinders the penetration of D2O to the surface of the molecule from the rates, which provides a novel method to investigate solution structures by a mass-spectrometric method. The droplet-collision mass spectrometry method developed in the present study can be extended to research on the molecular interactions in solutions, such as the mutual interactions of protein molecules, which are of importance in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.