Abstract

The reaction mechanism between phosphacyclopropenylidene and ethylene has been systematically investigated at the B3LYP/6-311++G(d,p) level of theory in order to better understand the reactivity of unsaturated cyclic phosphorus-bearing carbene. Geometry optimizations and vibrational analyses have been performed for the stationary points on the potential energy surface of the system. Calculations show that the spiro bicyclic intermediate could be produced through the cycloaddition process between phosphacyclopropenylidene and ethylene initially. The reaction mechanism is illustrated with the frontier molecular orbital theory. Introduction of electron-withdrawing group in phosphacyclopropenylidene will better facilitate the addition process. Through subsequent ring-expanding and hydrogen-migrating process, fuse-ring and allene compounds could be produced, respectively. Furthermore, it?s easy for spiro bicyclic intermediate and another ethylene to form a spiro tricyclic compound. This study is helps to understand the reactivity of phosphacyclopropenylidene, the evolution of phosphorus-bearing molecules in space, and to offer an alternative approach to the formation of phosphorus-bearing heterocyclic compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.