Abstract
AbstractThe mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second‐order Moller‐Plesset perturbation theory (MP2). By using 6–31G* basis, geometry optimization, vibrational analysis and energetics have been calculated for the involved stationary points on the potential energy surface. The results show that the title reaction has two major competition channels. An energy‐rich intermediate (INT) is firstly formed between alkylidene carbene and ethylene through a barrier‐free exothermic reaction of 63.62 kJ/mol, and the intermediate then isomerizes to a three‐membered ring product (Pl) and a four‐membered ring product (P2) via transition state TS1 and TS2, in which energy barriers are 47.00 and 51.02 kl/mol. respectively. PI is the main product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.