Abstract

Hydrochlorofluorocarbons (HCFCs) are important greenhouse gases and ozone-depleting substances. Thus, a thorough understanding of their atmospheric fate is essential for preventing and controlling atmospheric pollution. Herein, the atmospheric transformation mechanism of CF3CH2CClF2 (HCFC-235fa) by the OH radical and the Cl atom was carried out at the dual-level of CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(d,p). The reaction rate coefficients were calculated using the multistructural canonical variational transition state theory with small curvature tunneling (MS-CVT/SCT) at 200-1000 K. The kMS-CVT/SCT(CF3CH2CClF2 + OH) and kMS-CVT/SCT(CF3CH2CClF2 + Cl) values are 9.05 × 10-15 and 1.95 × 10-17 cm3 molecule-1 s-1 at 297 K, respectively. The results show that the role of OH is more important than Cl in the degradation of CF3CH2CClF2. The atmospheric lifetimes (83 days-77.93 years), ozone destruction potential (0.001-0.023), and global warming potentials (GWP100 = 21.06-5157.35) of CF3CH2CClF2 were assessed, and these results indicate that CF3CH2CClF2 is atmospherically persistent and environmentally unfriendly. The evolution mechanisms of CF3C·HCClF2, CF3C(OO˙)HCClF2, and CF3C(O˙)HCClF2 in the presence of O2, HO2˙, and NO were investigated and discussed. The resulting products of CF3CH2CClF2 are mostly highly oxidized multi-functional compounds in the forms of aldehydes, ketones, and organic nitrates. A computational assessment of acute and chronic toxicities was performed at three levels of nutrition in order to improve the understanding of the potential toxicity of CF3CH2CClF2 and its degradation products to the aquatic environment. The acidification potential of CF3CH2CClF2 was calculated to be 1.141 and presumed to contribute to the formation of acid rain. The results may contribute to describing HCFCs' atmospheric fate, persistence, and environmental risks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.