Abstract
YSZ is a promising material for resistive memory devices due to its high concentration of oxygen vacancies, which provide the high anion migration rates crucial for the manifestation of resistance switching in metal oxides. Therefore, investigating the ionic conductivity of YSZ is an important issue. The ionic conductivity and thermal stability of 8 mol% YSZ were studied using the theories and methods of solid-state physics and physical chemistry. The impact of anomalous atomic vibrations on the material was also explored, and the variation in the ion vibration frequency, electrical conductivity, and thermal stability coefficient of electrical conductivity with temperature was obtained. The results show that the ion conductivity of an 8 mol% YSZ solid electrolyte increases nonlinearly with temperature, with a smaller increase at lower temperatures and a larger increase at higher temperatures. Considering the anharmonic effect of ion vibrations, the electrolyte conductivity is higher than the result of the harmonic approximation, and the anharmonic effect becomes more significant at higher temperatures. Our research fills the gap in the current literature regarding the theoretical non-harmonic exploration of the ion conductivity and thermal stability factor of YSZ solid electrolytes. These results provide valuable theoretical guidance for the development and application of high-performance YSZ resistive memory devices in high-temperature environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.