Abstract

The compounds including furan-2,5-dicarboxylic acid (FDCA), 2-methyl-3-furoic acid (MFA), and 2-furoic acid (FA), containing Furan ring are considered to be possessing high ozone reactivity, although in depth studies of their ozonation processes have not been carried out yet. Hence, mechanism, kinetics and toxicity by quantum chemical, and their structure activity relationship are being investigated in this study. Studies of reaction mechanisms revealed that during the ozonolysis of three furan derivatives containing C=C double bond, furan ring opening occurs. At temperature (298 K) and pressure of 1 atm, the degradations rates of 2.22 × 103 M−1 s−1 (FDCA), 5.81 × 106 M−1 s−1 (MFA) and 1.22 × 105 M−1 s−1 (FA) suggested that the reactivity order is: MFA > FA > FDCA. In the presence of water, oxygen and ozone, the Criegee intermediates (CIs) as the primary products of ozonation would produce lower molecule weight of aldehydes and carboxylic acids by undergoing degradation pathways. The aquatic toxicity reveals that three furan derivatives play green chemicals roles. Significantly, most of the degradation products are least harmful to organisms residing in the hydrosphere. The mutagenicity and developmental toxicity of FDCA is minimum as compared to FA and MFA, which shows the applicability of FDCA in a wider and broader field. Results of this study reveal its importance in the industrial sector and degradation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call