Abstract

Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call