Abstract
The α-acids contained in hops are one of the ingredients of beer. The isomerization of α-acids produces iso-α-acids, the main source of bitterness in beer. In this study, the isomerization mechanism of the α-acid, cohumulone, was elucidated by using density functional theory in conjunction with the polarizable continuum model or 3D-RISM integral equation theory of liquids. The calculated reaction diagram is consistent with experimental results; the activation free energy difference between the cis and trans isomers is in good agreement with the experimental estimate. The activation energy difference results from solvation energy. Additionally, a calculation of NMR chemical shifts showed that the proton position of isocohumulone is different from that proposed previously. The effect of Mg2+ cation on the isomerization was also investigated. Both the activation and reaction free energy are stabilized by the presence of Mg2+, which is consistent with experimental results. Water solvation reduces the activation free energy.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have