Abstract

AbstractThe intermolecular hydrogen bonds of mono‐ and dihydrated complexes of 7‐(3′‐Pyridyl)indole (7‐3′PI) have been investigated using the time‐dependent density functional theory (TD‐DFT) method. The electrostatic potential analysis of monomer 7‐3′PI and 7‐(3′‐Pyridyl)indole‐water (7‐3′PI‐W) indicates that an intermolecular hydrogen bond between two waters can be formed for 7‐(3′‐Pyridyl)indole‐2water (7‐3′PI‐2W) complex. The calculated bond lengths of the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W in the S1 state (the first excited singlet state) are all shortened compared to the ground state. By the analysis of bond length, charge population and infrared spectra, it is demonstrated that the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W are all strengthened upon electronic excitation to the S1 state. Moreover, the fluorescence of 7‐3′PI‐W and 7‐3′PI‐2W are all red‐shifted to larger wavelength compared to monomer 7‐3′PI. The red‐shift of fluorescence peak of 7‐3′PI‐W and 7‐3′PI‐2W should be attributed to the change of hydrogen bond interaction before and after photoexcitation. Therefore, it can be concluded that the intermolecular hydrogen bonding strengthening in the excited S1 state induces the fluorescence weakening of 7‐3′PI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.