Abstract

The dynamics of the ultrafast excited-state multiple intermolecular proton transfer (PT) reactions in gas-phase complexes of 1H-pyrrolo[3,2-h]quinoline with water and methanol (PQ(H2O) n and PQ(MeOH) n , where n = 1, 2) is modeled using quantum-chemical simulations. The minimum energy ground-state structures of the complexes are determined. Molecular dynamics simulations in the first excited state are employed to determine reaction mechanisms and the time evolution of the PT processes. Excited-state dynamics results for all complexes reveal synchronous excited-state multiple proton transfer via solvent-assisted mechanisms along an intermolecular hydrogen-bonded network. In particular, excited-state double proton transfer is the most effective, occurring with the highest probability in the PQ(MeOH) cluster. The PT character of the reactions is suggested by nonexistence of crossings between ππ* and πσ* states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.