Abstract

The main features of the photoinduced kinetics of both ultrafast excited-state proton and electron transfer reactions that occur in the picosecond (ps) and femtosecond (fs) time domains are compared. Proton transfer (PT) reaction kinetics can be described in terms of several discrete values of rate coefficients in the form of polyexponential functions where each value of the rate coefficient can be attributed to a definite physical behavior of the reaction mechanism. In contrast, electron transfer (ET) reaction kinetics requires a consideration of a continuous distribution of rate coefficients. This difference can be related to structure of the ground-state reactant pairs for each reaction. Excited-state ET can occur at various configurations of reactant molecules and its rate reflects the fluctuations of the distances and orientations of these molecules. In contrast, excited-state PT requires preliminary formation of a ground-state H-bonded complex with definite structure where the reaction occurs after photoexcitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call