Abstract

Alkaline hydrolysis is an effective method to destroy such the pollutant as 2,4,6-trinitrotoluene (TNT) in solution and in well-mixed soil. The mechanism of hydrolytic transformation of polynegative complex, which is one of the products of early stages of TNT hydrolysis, was theoretically investigated at the SMD(Pauling)/M06-2X/6-31+G(d,p) level under alkali condition. The studied process consists of more than twenty steps and includes a six-membered cycle cleavage and sequenced [1,3]-hydrogen migration and C-C bond rupture. The highest energy barrier is observed for interaction of nitromethanide with hydroxide. The most exothermic steps are C–C bonds breaking. As a result final products such as formate, acetate, ammonium, and nitrogen are formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call