Abstract

By doping the model complexant N3H3 with one or two lithium atoms, the geometrical and electronic structures as well as static electric properties of the resulting Li(N3H3), (N3H3)Li' and Li(N3H3)Li' complexes can be explored using the B3LYP, BHandHLYP, CAM-B3LYP and MP2 methods. All three complexes, especially Li(N3H3), were found to have large first hyperpolarizabilities (β 0). Meanwhile, Li(N3H3) and Li(N3H3)Li' exhibited electride and alkalide characteristics, respectively. The dependance of electric properties of alkalide Li(N3H3)Li' on the alkali atoms involved and the complexant layer number were revealed by investigating the related M(N3H3)Li' and Li(N3H3)M' (M = Na and K), and Li(N3H3) n Li' (n = 2, 3) systems. Note that the β 0 value of alkalide M(N3H3)M' increased not only with the increasing atomic number of the M'(-) anion but also with that of the M(+) cation, which differs from previously reported cases. In addition, the electric properties of the Li(N3H3)Li' alkalide were enhanced by increasing the complexant layers. However, it was found that both the complexant-complexant and the complexant-Li' interactions reduced with the addition of N3H3 layers, so no stable structures were found for larger Li(N3H3) n Li' complexes. Graphical Abstract Geometrical and electronic structures as well as static electric properties of Li(N3H3), (N3H3)Li' and Li(N3H3)Li' complexes were explored using B3LYP, BHandHLYP, CAM-B3LYP and MP2 methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.