Abstract
Photodetectors utilizing donor/acceptor (D/A) molecules have the capacity to detect light through molecular interactions between a donor and an acceptor molecule. These devices leverage electronic or optical changes within molecules when exposed to light, resulting in observable modifications. The unique properties of photodetectors with D/A molecules make them valuable tools in various fields, including molecular electronics. This paper presents the modeling and simulation of a single-molecule photodetector based on a D/A molecule configuration. The acceptor molecule used is N-doped C60 fullerene, while the donor molecule is B-doped C60 fullerene. Initially, simulations were conducted at zero bias voltage to determine the energy and states of the bipartite molecule. Subsequently, the system's Hamiltonian was computed based on these results. The self-consistent field method (SCF) and optical self-energy coefficients were employed for modeling. Finally, the current-voltage curve of the device was derived for various input light frequencies. The simulation and modeling results demonstrated that the device exhibited negative differential resistances at bias voltages of 0.33 V, 1.58 V, and - 0.93 V, depending on the input light frequency. Furthermore, the designed device demonstrated the ability to detect and absorb waves with different frequencies. The number of current peaks in the current-voltage curve varied with by altering the number of optical modes. The computational work was conducted using the software package of Atomistix ToolKit (ATK-2018.06) and MATLAB code. The calculations were based on the density functional theory (DFT) approach and the self-consistent field method, specifically the non-equilibrium Green function (NEGF). The exchange correlation function was investigated using the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof (PBE). For the calculations, we employed the double-ζ plus polarization (DZP) basis set. Initially, the structures of N doped-C60-σ-B-doped-C60 molecule underwent optimization using the DFT approach implemented in the ATK package. This optimization process allowed us to extract the parameters of the molecule. Subsequently, we utilized the NEGF formalism in MATLAB software to model and simulate photodetector based on the optimized molecule. We calculated important features of the photodetector, such as photocurrent, and compared the performance of the photodetector using photons with energies of 2 and 3 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.