Abstract

The semi-empirical Austin Model 1 and the non-empirical pseudo-potential valence effective Hamiltonian (VEH) methods as well as the local spin density (LSD) approximation technique have been applied to the investigation of the doping-induced electronic and geometrical changes in some conjugated molecules related to poly( p-phenylene) and poly( p-phenylenevinylene) (PPV): biphenyl, stilbene and a phenyl-capped dimer of PPV. The theoretical results are compared with experimental valence band spectra, as recorded by ultraviolet photoelectron spectroscopy (UPS). The experimental UPS studies show that two ingap states are detected upon doping with alkali metals. The energy splitting between the two in-gap states increases as the molecule size decreases. The results of the LSD calculations agree very well with the experimental results, while the VEH method overestimates the energy splitting for the small molecules. The LSD modelling also indicates a destabilization of several high binding energy valence levels, due to the presence of counter-ions, in agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.