Abstract

An attempt is made to investigate theoretically the effective electron mass in ternary chalcopyrite semiconductors at low temperatures on the basis of a newly derived dispersion relation of the conduction electrons under cross fields for the more generalized case which occurs from the consideration of the various types of anisotropies in the energy spectrum. It is found, taking degeneraten-CdGeAs2 as an example, that the effective electron mass at the Fermi level along the direction of magnetic quantization depends on both the Fermi energy and the magnetic quantum number due to the combined influence of the crystal field splitting parameter and the anisotropic spin-orbit splitting parameter respectively, resulting in different effective masses at the Fermi level corresponding to different magnetic sub-bands. It is also observed that the same mass at the Fermi level in the direction normal to both magnetic and electric fields also varies both with Fermi energy and magnetic sub-band index, and the characteristic feature of cross-fields is to introduce the index-dependent oscillatory mass anisotropy. The theoretical results are in good agreement with the experimental observations as reported elsewhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call