Abstract
Structure and stability of an eventual inclusion complex formed by Lidocaine and two cyclodextrins (α- and β-CD) were investigated using molecular mechanics and quantum-chemical methods in the gas phase and in water. The molecular docking and quantum chemical calculations results show that no inclusion complex is formed between α-CD and Lidocaine molecule, while the conformational research allowed observing two minimum-energy structures between this molecule and β-CD. From a potential energy scan, a partial inclusion of the two ends of Lidocaine by the secondary face of the cavity of β-CD is observed with a better stability for the complex including the ((-N(C2H5)2) group in it. The minimum energy conformers, obtained by semi empirical method (PM3), have been exposed to fully geometry optimization employing ONIOM2 calculations by combining PM3 method with B3LYP, M06-HF and WB97XD functionals at 6-311G (d,p) basis set. The results show that complexation reactions are thermodynamically favored (Gand#176; ˂ 0) and the inclusion complexes are energetically stables and well structured (Sand#176; ˂ 0). According to the analysis of natural bond orbitals, the Van der Waals interactions are the sole driving forces that ensure the stability of the formed complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have