Abstract

This paper studies the small molybdenum clusters of Mon (n = 2–8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n = 7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo—N—N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N-N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call