Abstract

The structural, electronic, and vibrational characteristics and energies of the isolated polyoxide clusters Sc20O30, P20O50, Ti20O30F20, and V20O30F20 and ammonia complexes Sc20O30 · nNH3 were calculated by the density functional theory B3LYP method with several basis sets. The computation results show that a fullerene-like closo structure Ih with oxygen bridges located above the midpoints of the edges of an empty [M20] dodecahedron is preferable for the Ti20O30F20 and V20O30F20 clusters with four-coordinate metal atoms protected by the outer M-F bonds. This structure with a cage diameter of ∼1 nm and the diameter of nearly planar decagonal faces (windows) of ∼0.5 nm is stable to dissociation into fragments and to strong geometric distortions and retains its closo shape when molecules like NH3 and anions like H− are attached to the cage. An analogous closo structure is favorable for the P20O50 cluster; however, in this structure, the [P20] cage is severely distorted and all 12 windows are strongly corrugated. For Sc20O30, the Ih dodecahedron with bare three-coordinate Sc atoms corresponds to a local minimum of the potential energy surface, which is 170–200 kcal/mol less favorable than compact puck-shaped isomers in which four- and five-coordinate metal atoms and three- and four-coordinate oxygen atom prevail. “Solvation” of the dodecahedral and puck-shaped Sc20O30 isomers by ammonia molecules strongly decreases the energy gap between the isomers; however, the dodecahedron Ih in all cases remains a high-lying intermediate. According to calculations, most polyoxides under consideration have a high electron affinity (comparable with or higher than that of fullerenes) and is able to add three to five or more alkali-metal atoms to form radical salts in which clusters are in the state of polyanions. Because of large sizes of the [M20] cages and their windows, the interior of the cage (as distinct from fullerenes) can accommodate a considerable number of atoms and several small molecules. The V20O30F20 cluster has 20 unpaired electrons and can be treated as a molecular magnet. The properties of the [M20] cages depend only slightly on the outer substituents. It is suggested that the pattern will be retained upon the substitution of OH groups for the F atoms and that the hydroxo-substituted clusters can bind to each other through hydrogen bridges and serve as building blocks for self-assembly into ordered nanometer and crystalline structures of various dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call