Abstract

The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/ɛ)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p1/2 mirror resonance in the partial 4p1/2 and 4p3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.