Abstract

In this study the phase stability, elastic properties, and plastic behaviour of icosahedral transition metal borides T0.75Y0.75B14 (T = Sc, Ti, V, Y, Zr, Nb, Si) have been investigated using density functional theory. Phase stability critically depends on the charge transferred by T and Y to the B icosahedra. For the metal sublattice occupancy investigated here, the minimum energy of formation is identified at an effective B icosahedra charge of −1.8 ± 0.1. This charge corridor encompasses the highest phase stability among all the reported icosahedral transition metal boride systems so far. This data provides guidance for future experimental efforts: from a wear-resistance point of view, Sc0.75Y0.75B14, Ti0.75Y0.75B14, and Zr0.75Y0.75B14 exhibit a rather unique and attractive combination of large Young’s modulus values ranging from 488 to 514 GPa with the highest phase stability for icosahedral transition metals borides reported so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.