Abstract
Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns-Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.