Abstract

A detailed quantum chemical calculation based study of hydrogen bond formation in trimethylene glycol- (TMG-) water complex has been performed by Hatree-Fock (HF) method, second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and density functional theory with dispersion function (DFT-D) using 6-31++G(d,p) basis set. B3LYP DFT-D, WB97XD, M06, and M06-2X functionals are used to capture highly dispersive hydrogen bond formation. Geometrical parameters, interaction energy, deviation of potential energy curve of hydrogen-bonded O–H from that of free O–H, natural bond orbital (NBO), atom in molecule (AIM), charge transfer, and red shift are investigated. It is observed that hydrogen bond between TMG and water molecule is stronger in case of TMG acting as proton donor compared to that of water acting as proton donor, and dilute TMG solution would inhibit water cluster formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.