Abstract

Lithium-sulfur (Li-S) batteries have become a research hotspot due to their high energy density. However, they also have certain disadvantages and limitations. To enhance the performance of Li-S batteries, this study focuses on the utilization of transition metal (TM)-embedded vanadium disulfide (VS2) materials as cathode catalysts. Using density functional theory (DFT), comprehensive calculations and atomic-level screening of ten TM atoms were conducted to understand the underlying mechanisms and explore the potential of TM@VS2 catalysts for enhancing battery performance. The computational results indicate that five selected catalysts possess sufficient bonding strength towards high-order lithium polysulfide intermediates by the formation of a significant covalent bond between S atoms in Li2Sn and TM atoms, thereby effectively suppressing the shuttle effect. The Ni@VS2 catalyst can effectively decrease the decomposition energy barrier of Li2S in the charge reaction and can have an optimal Gibbs free energy at the rate-determining step among TM@VS2 catalysts for the discharge reaction. This study elucidates the mechanism of VS2-based transition-metal single-atom catalysts and provides an effective reference for the anchoring of TM atoms on other materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.