7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1177/16878140211040462
Copy DOIJournal: Advances in Mechanical Engineering | Publication Date: Aug 1, 2021 |
Citations: 13 | License type: CC BY 4.0 |
This article addresses the hemodynamic flow of biological fluid through a symmetric channel. Methachronal waves induced by the ciliary motion of motile structures are the main source of Couple stress nanofluid flow. Darcy’s law is incorporated in Navier-Stokes equations to highlight the influence of the porous medium. Thermal transport by the microscopic collision of particles is governed by Fourier’s law while a separate expression is obtained for net diffusion of nanoparticles by using Fick’s law. A closed-form solution is achieved of nonlinear differential equations subject to Newton’s boundary conditions. Moreover, the current findings are compared with previous outcomes for the limiting case and found a complete coherence. Parametric study reveals that nanoflow is resisted by employing Newton’s boundary conditions. Thermal profile enhancement is contributed by the viscous dissipation parameter. Finally, one infers that hemodynamic flow of non-Newtonian fluid is an effective mode of heat and mass transfer especially, in medical sciences for the rapid transport of medicines in drug therapy.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.