Abstract

A new energy extraction scheme of a chemically pumped pulsed large-scale iodine laser based on a high-pressure pulsed singlet oxygen generator is proposed. In previous investigations only low-pressure oxygen generators have been considered. Since they require a high iodine density for an efficient amplifier operation, the lifetime of the stored energy is correspondingly small and thus only small-sized iodine amplifiers appear to be technically feasible. We found, however, that when the singlet oxygen is generated at high-pressure, the iodine density required can be considerably reduced so that the lifetime of the stored energy becomes sufficiently long to fill up large amplifier cells. A numerical model is developed and the extractable energy is theoretically estimated. It is shown that 0.2J/1·pass can be extracted when an input pulse of 20 ns duration (FWHM) and 1 J/cm2 fluence is fed into the amplifying medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call