Abstract

This paper presents a numerical study of a closed-cycle evaporation system for the desalination of seawater. The system couples the condensing end of a heat pump with a humidifier, where the air is dehumidified in the heat pump evaporator. First, the mechanism of action of the closed-cycle evaporation system was analyzed from the perspective of heat transfer, and the control equations for the heat and mass transfer of the system were investigated. In addition, a mathematical model of the system was developed and validated. The influence of several important parameters of the air and seawater entering the system on the system’s performance under the design conditions was investigated numerically. The parametric analysis showed that the effect of the seawater mass flow rate on the system’s productivity was not significant. As the air mass flow rate increases, the freshwater production rate increases and then decreases. The output ratio (GOR) of the system was estimated and found to be competitive with other reported HDH systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call