Abstract
High contrast grating (HCG) is the structure made up of the sub-wavelength grating of high-index and the surrounding layer of low-index, which reveals high contrast between two materials. Its advantages include high reflectivity over a broad bandwidth, polarization and wavelength selectivity, optical high-Q resonator, and phase modulation. In this work, the HCG structure comprising of indium tin oxide (ITO) and Silicon (Si), for the surrounding layer and the grating layer respectively, was studied. Its theoretical model was established, and transmittance, phase and optical behavior were calculated by rigorous coupled-wave analysis and finite element method. Furthermore, the established structure was fabricated to validate its feasibility. The fabricated structure shows the focusing capability whose length is about 10 μm, and the feasibility of the structure was demonstrated. It is also meaningful that ITO layer can contribute to the fabrication of the HCG structure, leading to enable the structure to be electrical-driven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.