Abstract

The G3MP2B3 and P3 methods have been used to calculate the adiabatic and vertical ionization potentials (IPs) of the eight most stable tautomers of guanine. The calculated energy discrepancy between adiabatic and vertical IPs are in good agreement with the changes in geometry from neutral ground state to stable cation radicals. The geometries of imino-oxo form tautomers have no obvious change in the ionization process, which results in less energy discrepancy between vertical and adiabatic IPs. In the ionization process, the geometries of the amino-oxo and amino-hydroxy form tautomers change from nonplanar to planar structures. Hence the amino-oxo and amino-hydroxy form tautomers have larger energy discrepancy between vertical and adiabatic IPs. Further studies on the interconversion of the cation radicals shed further light on the transition process between the cation radicals and the main pathways are the hydrogen migrations and internal rotations of hydroxy (OH) and imino (NH) groups. The barriers of hydrogen rotations are lower than those of hydrogen migrations. Furthermore, the barriers for the hydrogen migrations between two rings are higher, which are about 3.0 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call