Abstract

The new comprehensive model of the process for matching epitaxial layers to substrates, in dependence of theirs crystallographic orientation, was developed to allow a theoretical prediction of the strain and stress in thin AlGaN epitaxial layers with different composition grown on GaN template. The elements of the continuous anisotropic materials strength theory was applied to develop the model. It was observed that in AlGaN/GaN heterostructures the stress was greater than the upper limit of acceptable tensile stress even for a small Al content and also that the stress could greatly vary, in a value and a direction, depending on substrate crystallographic orientation and an Al content in AlGaN layer. The obtained results theoretically explained the commonly observed technological problems occurring during the growth of AlGaN layers even with a small Al content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.